
Understanding Racial Disparities in Automatic Speech Recognition: the case
of habitual “be”

Joshua L. Martin1, Kevin Tang1

1Department of Linguistics, University of Florida, Gainesville, FL, U.S.A., 32611-5454
joshua.martin@ufl.edu, tang.kevin@ufl.edu

Abstract
Recent research has highlighted that state-of-the-art auto-

matic speech recognition (ASR) systems exhibit a bias against
African American speakers. In this research, we investigate
the underlying causes of this racially based disparity in per-
formance, focusing on a unique morpho-syntactic feature of
African American English (AAE), namely habitual “be”, an in-
variant form of “be” that encodes the habitual aspect. By look-
ing at over 100 hours of spoken AAE, we evaluated two ASR
systems – DeepSpeech and Google Cloud Speech – to exam-
ine how well habitual “be” and its surrounding contexts are in-
ferred. While controlling for local language and acoustic fac-
tors such as the amount of context, noise, and speech rate, we
found that habitual “be” and its surrounding words were more
error prone than non-habitual “be” and its surrounding words.
These findings hold both when the utterance containing “be” is
processed in isolation and in conjunction with surrounding ut-
terances within speaker turn. Our research highlights the need
for equitable ASR systems to take into account dialectal differ-
ences beyond acoustic modeling.
Index Terms: speech recognition, racial bias, racial disparities,
syntactic features, error analysis, fair machine learning, natural
language processing, speech-to-text, African American English

1. Introduction
Linguistic discrimination has adversely affected the lives of
marginalized populations for centuries, especially racially mi-
noritized groups in the United States [1]. However, in spite
of extensive research on linguistic discrimination between hu-
mans, little has been done to investigate the ways that auto-
matic speech recognition (ASR) systems may be inheriting the
same sorts of linguistic biases as their creators. This concern
was highlighted most recently by Koenecke, et al. [2] who
found that the average word error rate (WER) for white Ameri-
can speakers was significantly lower as compared to an average
WER for African American speakers (19% vs 35%) among five
prominent ASR systems from such companies as Google, Ama-
zon, and Apple.

Building from this ground-breaking study and others that
highlight similar issues [3, 4], this paper seeks to probe the un-
derlying causes of racial disparity in ASRs. Koenecke, et al. [2]
show that part of its roots lies in the mismatches between the
acoustic data that the ASR systems were trained on, namely
speech of white Americans, and the acoustic signal that the
systems were tested on, namely speech of African Americans.
Keeping the negative impact of the acoustic model constant,
we seek to extend this analysis by investigating whether the
morpho-syntactic differences between African American En-
glish (AAE) and Standardized American English (SAE) may
also play a significant role in these performance gaps.

In this study, we have chosen to examine how ASRs handle

habitual “be”. Habitual “be” is an invariant form of “be” that
is distinct in AAE and encodes the habitual aspect (e.g., “I be
in my office by 7:30,” meaning, “I am usually in my office by
7:30. [5]). Habitual “be” is a helpful case study as it is ho-
mophonous with other forms of uninflected “be” found in both
AAE and SAE and allows a clear point of comparison for how
ASRs handle instances of the word “be” that are habitual and
those that are non-habitual. Because it is probable that the lan-
guage model component of most ASRs have not been trained on
AAE linguistic structures, utterances containing habitual “be”
may be incorrectly inferred as another construction using “be”;
for example, “I be in my office by 7:30,” (habitual) could be
inferred as “I’ll be in my office by 7:30” (future). This incor-
rect inference of habitual “be” as non-habitual “be” is likely the
result of habitual “be” having a lower probability of occurrence
than non-habitual “be” given its contexts.

To this end, our two main research questions are, (1) how
error prone is habitual “be” in ASR inferences, and (2) how does
the occurrence of habitual “be” affect the error level of its local
context in ASR inferences? In addition to these main inquiries,
we also consider variables such as amount of context, domino
effect, speech rate and signal to noise ratio, and what part they
play in these processes.

2. Methods
2.1. Audio Data

All audio data fed to the ASR models in our analysis were
drawn from the Corpus of Regional African American Lan-
guage (CORAAL) [6]. CORAAL contains over 100 sociolin-
guistic interviews with African American speakers, totaling to
over 105 hours of audio and including a rich variety of inter-
viewees that vary widely by age, socio-economic background,
gender identity, and urban/ruralness.

3,635 instances of the word “be” were collected from tran-
scripts of the interviews. Each instance of “be” was hand-
tagged as habitual/non-habitual and instances of “be” from non-
Black interviewers were filtered out, resulting in 376 instances
of habitual “be” and 2,974 instances of non-habitual “be”.

For each instance of “be”, audio clips for both the utter-
ance and speaker turn in which it occurred were extracted using
Parselmouth [7]. Utterance here refers to a single segment of
speech delimited by pauses and transcribed in CORAAL as a
single transcript line. Speaker turn refers to the entire set of a
speaker’s contiguous utterances before another interlocutor be-
gins speaking. Both utterance and turn were extracted because
ASR systems differ in their level of signal decoding. Some work
on a single-pass, essentially transcribing audio to text as they
go; others have a multi-pass system, whereby they transcribe as
they go and then return for more passes over a larger context to
determine the most probable inference, correcting themselves
in the process.
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2.2. ASR Models

Two ASR models were chosen for examination, one commer-
cial and one open source. The commercial model, Google
Cloud Speech [8] was selected both for its acclaimed state-of-
the-art performance and inclusion in Koenecke, et al. [2]. Re-
searchers behind the model report a WER of 6.7% [9], and Koe-
necke, et al. found it had a slightly lower error rate for African
American speakers relative to other ASRs tested in the study.

Alongside a commercial option, an open source option was
also incorporated into our study as commercial options tend to
be less forthcoming with information about the ASR’s acous-
tic models, language models, and training data. DeepSpeech
[10] was selected because of its prominence and wide-spread
use. DeepSpeech boasts an overall WER of 7.5% [11], and ver-
sion 0.6 (used here) is trained on 3816 hours of transcribed au-
dio taken from spoken English corpora Common Voice English
[12], LibriSpeech [13], Fisher [14], and Switchboard [15] and
1700 hours taken from transcribed NPR programs [11].

2.3. Dependent Variables

2.3.1. Accuracy of “Be”

In order to determine the accuracy of the various ASR systems
in recognizing each instance of “be”, a process of deciding cor-
rectness using semi-automatic annotation was devised:

Step 1: if ASR inferences did not contain the word “be”,
they were judged incorrect. If they did, they were passed on
to the next step. Step 2: a dependency parser from spaCy [16]
was applied to examine syntactic dependencies to the left and
right of “be” in the intended speech and the corresponding ASR
inference. If each set of dependencies matched, the inference
was labeled correct. For remaining instances, if the text of the
word immediately to the left and to the right of “be” matched
in the intended speech and ASR inference, the inference was
deemed correct. Step 3: for inferences not labeled in the first
two steps, a hand-coding scheme was used to decide correct-
ness. For instances of habitual “be”, if the “be” within the ASR
inference maintained habitual aspect, the inference was judged
correct. For non-habitual instances, if the grammatical type of
“be” matched between intended speech and inference, the in-
ference was labeled correct. Step 4: All remaining inferences
were deemed incorrect.

2.3.2. Word Error Rate

Word Error Rater (WER) is a common measure used to de-
termine the accuracy of ASR systems. WER is calculated by
comparing all possible alignments of transcripts of intended
speech with corresponding ASR inferences. Each alignment
is a sequence of substitutions, deletions, and insertions (SDI)
that equalize the word length of the inference with the intended
speech. The number of SDI is then summed for each alignment,
and the one with the lowest total (i.e., cost) is chosen as the op-
timal alignment. WER is then calculated by taking the total of
SDI for this alignment and dividing it by the number of words
in the intended speech.

For our study, we utilized the Wagner-Fischer algorithm
[17, 18] to determine WER for full utterances and speaker turns.
Additionally, we ascertained WER for the remaining portion of
each utterance preceding and following “be” both in isolation
and embedded within its larger speaker turn.

2.4. Variables of Interest

2.4.1. Habituality

Habitual “be” is unique in that it encodes the habitual aspect
(see Sec. 1 Introduction), while all other forms of uninflected
“be” which occur in AAE and SAE do not encode grammatical
aspect in and of themselves. These other types of uninflected
“be” appear both alone and in conjunction with other verbs in
various syntactic constructions that are distinctly non-habitual,
such as:

• auxiliary “be” in progressive constructions (e.g., “I will
be going there tomorrow.”)

• auxiliary “be” in passive constructions (e.g., “She should
be given an award.”)

• copula or auxiliary “be” preceded by verbal comple-
ments (e.g., “He wanted to be a lawyer.”)

• copula or auxiliary “be” preceded by a modal (e.g.,
“They might be in the house.”)

• imperative “be” (e.g., “Be quiet!”)

2.4.2. Amount of Context

It has been shown that the incorporation of context into ASR
processing can decrease WER and improve ASR accuracy
[19, 20, 21]. Given this, we considered how the amount of con-
text surrounding the occurrence of “be” may affect each ASR’s
ability to correctly process “be”. Additionally, while many lan-
guage models only consider preceding context [22, 23], both
preceding and following contexts of ‘be’ within the utterance
were included in our study in order to measure local effects be-
fore and after ‘be’.

2.4.3. Domino Effect

Along with acoustic models, ASRs function on language mod-
els which, at their most fundamental levels, compute the proba-
bility of a word given its adjacent contexts. If a word is mis-
inferred, it can cause other words to be misinferred as well,
creating a domino effect in the rest of the inference. Take
the intended phrase, “melting ice”, and its misinferred version,
“cooking rice”. If the intended context of “ice” (“melting”)
has a lower probability, in terms of the acoustic and language
models, than the potential candidate word (“cooking”), the sub-
sequent intended word (“ice”) following the more likely, but
incorrect, candidate (“cooking”) would have a lower language
model probability than the other subsequent candidate word
(“rice”). As a result, “ice” would also be misinferred.

For this reason, we sought to examine the effect that the in-
correct inference of other words would have on the error rate
of “be” within a context. We hypothesized that the more words
that are misinferred within the context of “be”, the higher the
error rate of “be”. This effect could potentially be a result of
either the preceding or following context of “be” or both. Con-
versely, it is also possible that the accuracy of “be” could affect
the error rate of other words occurring within its local context.
Thus, we also hypothesized that if “be” were misinferred, then
error rates for words surrounding “be” would be higher. This
effect could potentially affect either the preceding or following
context of “be” or both.

2.4.4. Speech Rate

Faster rates of speech [24, 25] and sometimes very slow rates of
speech [24, 26] have been shown to correlate with higher error
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rates. We hypothesized, then, that the higher the speech rate,
the higher the error rate will be for ASR inferences. Speech
rate was calculated as the number of syllables per second in
each utterance where utterance is defined as a breath group (see
Sec. 2.1) following common practice in phonetic research [27].

2.4.5. Signal to Noise Ratio

A frequent and complex issue in ASR performance is the
amount of noise contained within input audio. The speech-to-
noise ratio (SNR) of a given speech signal is a commonly used
measure that determines the amount of noise that is included in
the signal [28]. To understand how noise may have impacted
ASR inferences in our study, we included an examination of the
SNR levels of each audio file. We hypothesized that the higher
the SNR level, the higher the error rate will be for both “be”
and its surrounding context. The SNR of a signal without a ref-
erence noise file was estimated with the Waveform Amplitude
Distribution Analysis (WADA-SNR) [29] with the Matlab im-
plementation by Ellis [30].

3. Experiment
3.1. Experiment 1: How error prone is habitual “be”?

Here, we assessed how error prone habitual “be” would be
within ASR inferences and which variables of interest had
the most significant impacts. Mixed effects logistic regression
(glmer in the lme4 library [31]) was used. For each of the two
ASRs (DeepSpeech and Google) with the two signal types (ut-
terance and turn), a model predicting the accuracy of “be” was
fitted with the fixed effects outlined in Section 2.4 as well as
speaker as a random intercept. Categorical variables were sum-
coded and continuous variables were z-score normalized, ex-
cept for word count which was also log-transformed (base-10).

3.2. Experiment 2: How error prone are words surround-
ing habitual “be”?

Here, we turned our attention to the words surrounding habit-
ual “be” and assessed whether they would be more error prone
than those surrounding non-habitual “be”, while also investigat-
ing which variables of interest had the most significant impacts.
Linear mixed-effects regression (lmer) was used. For each of
the two ASRs (DeepSpeech and Google) with the two signal
types (utterance and turn), two models were fitted to analyze
the WER separately for words preceding “be” and following
“be”. The model structure is similar to that of Experiment 1
with a few differences: 1) the accuracy of “be” was included as
a fixed effect, and 2) the WER and the word count variables of
the same direction as the dependent variable were excluded.

4. Results
4.1. Descriptive statistics

Our results show that both DeepSpeech and Google were much
less able to correctly infer habitual “be” than all other types
of non-habitual “be”, both at the utterance and turn level, as
displayed in Table 1. At the utterance level, Google was 2.18
times less capable of correctly inferring habitual “be” than non-
habitual “be”, while DeepSpeech was 4.92 times less capable.
For turns, Google was 2.70 times less capable of correctly in-
ferring habitual “be” than non-habitual “be”, while DeepSpeech
was 3.31 times less capable.

Further, as shown in Table 2, words surrounding habitual

“be” in DeepSpeech were 1.22 times more likely to be erro-
neous than words surrounding non-habitual “be” in utterances,
and 1.27 more likely in turns. For Google, words surround-
ing habitual “be” were, on average, 1.43 times more likely to
be erroneous in utterances and 1.56 times more likely in turns.
Overall then, both the inferences of habitual “be” and the words
surrounding them are much more error prone.

Table 1: Accuracies of habitual “be” and non-habitual “be”

Utterance Turn

DeepSpeech Google DeepSpeech Google

Non-habitual 39.21% 71.58% 49.32% 76.90%
Habitual 7.97% 32.71% 14.88% 28.53%

Bias ratio
(Non-hab/Hab) 4.92 2.18 3.31 2.70

Table 2: WERs of words surrounding habitual “be” and non-
habitual “be”

Utterance Turn

DeepSpeech
pre, post

Google
pre, post

DeepSpeech
pre, post

Google
pre, post

Non-habitual 0.60, 0.56 0.37, 0.35 0.46, 0.48 0.28, 0.29
Habitual 0.73, 0.68 0.55, 0.48 0.59, 0.61 0.43, 0.45

Bias ratio
(Hab/Non-hab) 1.22, 1.22 1.47, 1.39 1.27, 1.27 1.53, 1.56

4.2. Statistical Analysis: Experiment 1

4.2.1. DeepSpeech

Table 3 summarizes the fixed effects of DeepSpeech’s accuracy
of “be” with utterance and turn-level input. The results were
similar across each. All variables were significant, except for
speech rate in the turn condition and SNR. The key variable, ha-
bituality, was significant in the negative direction (βutt.: -1.676,
βturn: -1.366) suggesting that habitual “be” is more error prone
than non-habitual “be”. The word count variables were signif-
icant suggesting an effect of context size on the accuracy of
“be”. However, the two word count variables act in opposite di-
rection with word count following “be” having a negative effect
on accuracy (βutt.: -0.098, βturn: -0.097), a surprising finding.
WER has a consistent negative effect on accuracy from both
sides of “be”. With both the word count and WER variables,
those preceding “be” have a stronger effect than those follow-
ing “be” by comparing their absolute β values. This suggests
that the negative effect of the language model has on accuracy
is asymmetrical. Speech rate has a negative effect on accuracy
(βutt.: -0.157) at the utterance-level.

4.2.2. Google

Table 4 summarizes the fixed effects of Google’s accuracy of
“be” with both utterance and turn-level input. While the ef-
fect of habituality remains significant in the negative direction
(βutt.: -1.279, βturn: -1.966), the other variables of interest
behave differently with Google compared to the DeepSpeech.
Word count following “be” is only significant at the turn level,
while word count preceding “be” is only significant at the utter-
ance level. WER has a consistent negative effect on accuracy
from both sides of “be”; however, unlike DeepSpeech, WER
following “be” has a stronger effect than WER preceding “be”.
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Table 3: Fixed effects summaries of DeepSpeech’s accuracy of
“be” with utterance- and turn-level input

Utterance Turn

β z-value sig. β z-value sig.

Habituality -1.676 -7.274 *** -1.366 -7.508 ***
Word count
(pre-“be”) 0.531 10.077 *** 0.114 2.355 *

Word count
(post-“be”) -0.098 -1.890 · -0.097 -1.960 *

WER (pre-“be”) -1.193 -21.205 *** -0.844 -16.631 ***
WER (post-“be”) -0.926 -16.939 *** -0.738 -14.111 ***
Speech Rate -0.157 -2.725 ** -0.075 -1.424 n.s.
SNR -0.024 -0.432 n.s. 0.076 1.334 n.s.

*** (p <0.001), ** (p <0.01), * (p <0.05), · (p <0.1) and n.s. (p >0.1)

Speech rate was not significant. SNR was only nominally sig-
nificant at the turn level.

Table 4: Fixed effects summaries of Google’s accuracy of “be”
with utterance- and turn-level input

Utterance Turn

β z-value sig. β z-value sig.

Habituality -1.279 -8.063 *** -1.970 -12.575 ***
Word count
(pre-“be”) 0.330 5.695 *** 0.085 1.576 n.s.

Word count
(post-“be”) -0.084 -1.445 n.s. -0.301 -5.314 ***

WER (pre-“be”) -0.988 -17.385 *** -0.759 -14.559 ***
WER (post-“be”) -1.011 -17.461 *** -0.851 -15.515 ***
Speech Rate -0.093 -1.553 n.s. -0.005 -0.089 n.s.
SNR -0.016 -0.267 n.s. 0.105 1.693 ·

*** (p <0.001), ** (p <0.01), * (p <0.05), · (p <0.1) and n.s. (p >0.1)

4.3. Statistical Analysis: Experiment 2

4.3.1. DeepSpeech

Table 5 summarizes the fixed effects of DeepSpeech’s WER of
words preceding and following “be” with both utterance and
turn-level input. Habituality is significant in the positive direc-
tion, suggesting that habitual “be” increases the WER of words;
however, it only affects post-“be” WER (βutt.: 0.069, βturn:
0.126). Accuracy of “be” has a negative effect on WER of
words before and after “be” for both utterance and turn lev-
els. Word count is significant only when preceding “be” (βutt.:
0.020, βturn: 0.016), suggesting that the preceding context has
a stronger effect on the accuracy of the following words than
the following context has on the preceding words. WER on
the opposite side of “be” has a significant effect but only at the
turn level (βpre: 0.025, βpost: 0.037). Speech Rate is signifi-
cant across conditions in a positive direction – the higher speech
rate, the higher the WER. SNR had no effect on WER.

4.3.2. Google

Table 6 summarizes the fixed effects of Google’s WER of words
preceding and following “be” with both utterance and turn-level
input. The overall patterns are similar to those of DeepSpeech
with two notable differences: 1) habituality is significant in the
positive direction only at the utterance level for WER of both
sides of “be” (βpre: 0.091, βpost: 0.041) and 2) word count
preceding “be” is not significant.

Table 5: Fixed effects summaries of DeepSpeech’s pre-“be” and
post-“be” WER with utterance- and turn-level input

Utterance Turn

Pre-“be” Post-“be” Pre-“be” Post-“be”

β β β β

Habituality 0.012n.s. 0.069∗∗∗ -0.032n.s. 0.126∗∗∗

“be”-accuracy -0.308∗∗∗ -0.311∗∗∗ -0.246∗∗∗ -0.298∗∗∗

Word count
(pre-“be”) — 0.020∗∗ — 0.016·

Word count
(post-“be”) -0.005n.s. — 0.006n.s. —

WER
(pre-“be”) — 0.004n.s. — 0.037∗∗∗

WER
(post-“be”) 0.005n.s. — 0.025∗∗∗ —

Speech Rate 0.038∗∗∗ 0.036∗∗∗ 0.028∗∗∗ 0.059∗∗∗

SNR -0.001n.s. 0.007n.s. 0.005n.s. 0.012n.s.

*** (p <0.001), ** (p <0.01), * (p <0.05), · (p <0.1) and n.s. (p >0.1)

Table 6: Fixed effects summaries of Google’s pre-“be” and
post-“be” WER with utterance- and turn-level input

Utterance Turn

Pre-“be” Post-“be” Pre-“be” Post-“be”

β β β β

Habituality 0.091∗∗∗ 0.041· 0.020n.s. 0.033n.s.

“be”-accuracy -0.322∗∗∗ -0.348∗∗∗ -0.244∗∗∗ -0.366∗∗∗

Word count
(pre-“be”) — 0.008n.s. — 0.010n.s.

Word count
(post-“be”) 0.008n.s. — -0.010n.s. —

WER
(pre-“be”) — 0.011n.s. — 0.068∗∗∗

WER
(post-“be”) 0.009n.s. — 0.045∗∗∗ —

Speech Rate 0.038∗∗∗ 0.040∗∗∗ 0.029∗∗∗ 0.050∗∗∗

SNR -0.006n.s. -0.006n.s. 0.002n.s. 0.002n.s.

*** (p <0.001), ** (p <0.01), * (p <0.05), · (p <0.1) and n.s. (p >0.1)

5. Conclusions
Based on our results, habitual “be” and its surrounding words
seem much more error prone than non-habitual “be”. Across
the board, habituality was a significant predictor of these errors.
The effect of preceding context and word error was higher than
in the other direction, likely due to language models which only
take into account the context of preceding words. Lastly, acous-
tic factors did not have a consistent effect in our experiments.

Beyond these findings, our outcomes reveal that many ASR
systems may be biased not only against the acoustic aspects of
AAE [2], but also morpho-syntactic features as well. Evidence
shown here suggests that ASR systems may work much more
poorly for speakers who utilize unique grammatical aspects of
AAE such as habitual “be”.

Finally, our results suggest that word error rate may not be
the best measure for ASR accuracy. In traditional WER, all
words are equal. However, as shown here, a word with a specific
morpho-syntactic category can have a greater impact than what
traditional WER captures.

6. Acknowledgements
We would like to thank Dr. Galia Hatav and Dr. James Garner
for their discussions on the syntactic features, Dr. Ratree Way-
land for her feedback on the paper, and Halee Corbin for her
techinical support with the SNR computation.

629



7. References
[1] J. Baugh, “Linguistic profiling and discrimination,” The Oxford

handbook of language and society, pp. 349–368, 2016.

[2] A. Koenecke, A. Nam, E. Lake, J. Nudell, M. Quartey, Z. Menge-
sha, C. Toups, J. R. Rickford, D. Jurafsky, and S. Goel, “Racial
disparities in automated speech recognition,” Proceedings of the
National Academy of Sciences, vol. 117, no. 14, pp. 7684–7689,
2020.

[3] R. Tatman and C. Kasten, “Effects of talker dialect, gender & race
on accuracy of bing speech and youtube automatic captions.” in
INTERSPEECH, 2017, pp. 934–938.

[4] R. Dorn, “Dialect-specific models for automatic speech recogni-
tion of african american vernacular english,” in Student Research
Workshop, 2019, pp. 16–20.

[5] L. J. Green, African American English: a linguistic introduction.
Cambridge University Press, 2002.

[6] T. Kendall and C. Farrington, “The corpus of regional african
american language,” Version, vol. 6, p. 1, 2018.

[7] Y. Jadoul, B. Thompson, and B. De Boer, “Introducing parsel-
mouth: A python interface to praat,” Journal of Phonetics, vol. 71,
pp. 1–15, 2018.

[8] Google cloud speech-to-text. [Online]. Available:
https://cloud.google.com/speech-to-text/

[9] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 4774–4778.

[10] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.

[11] R. Morais. Deepspeech 0.6: Mozilla’s speech-to-
text engine gets fast, lean, and ubiquitous. [Online].
Available: https://hacks.mozilla.org/2019/12/deepspeech-0-6-
mozillas-speech-to-text-engine/

[12] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler,
J. Meyer, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” arXiv
preprint arXiv:1912.06670, 2019.

[13] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[14] C. Cieri, D. Miller, and K. Walker, “The fisher corpus: a resource
for the next generations of speech-to-text.” in LREC, vol. 4, 2004,
pp. 69–71.

[15] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard:
Telephone speech corpus for research and development,” in [Pro-
ceedings] ICASSP-92: 1992 IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 1. IEEE, 1992,
pp. 517–520.

[16] M. Honnibal and I. Montani, “spacy 2: Natural language un-
derstanding with bloom embeddings,” Convolutional Neural Net-
works and Incremental Parsing, 2017.

[17] R. A. Wagner and M. J. Fischer, “The string-to-string correction
problem,” Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–
173, 1974.

[18] K. Gorman, “wagnerfischerpp.py,”
https://gist.github.com/kylebgorman/8034009, 2013.

[19] P. Aleksic, M. Ghodsi, A. Michaely, C. Allauzen, K. Hall,
B. Roark, D. Rybach, and P. Moreno, “Bringing contextual infor-
mation to google speech recognition,” in Sixteenth Annual Con-
ference of the International Speech Communication Association,
2015.

[20] K. Hall, E. Cho, C. Allauzen, F. Beaufays, N. Coccaro,
K. Nakajima, M. Riley, B. Roark, D. Rybach, and L. Zhang,
“Composition-based on-the-fly rescoring for salient n-gram bias-
ing,” in Sixteenth Annual Conference of the International Speech
Communication Association, 2015.

[21] J. Scheiner, I. Williams, and P. Aleksic, “Voice search language
model adaptation using contextual information,” in 2016 IEEE
Spoken Language Technology Workshop (SLT). IEEE, 2016, pp.
253–257.

[22] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computa-
tional linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[23] Y. Halpern, K. B. Hall, V. Schogol, M. Riley, B. Roark, G. Sko-
beltsyn, and M. Baeuml, “Contextual prediction models for
speech recognition.” in INTERSPEECH, 2016, pp. 2338–2342.

[24] M. A. Siegler and R. M. Stern, “On the effects of speech rate
in large vocabulary speech recognition systems,” in 1995 inter-
national conference on acoustics, speech, and signal processing,
vol. 1. IEEE, 1995, pp. 612–615.

[25] E. Fosler-Lussier and N. Morgan, “Effects of speaking rate
and word frequency on pronunciations in convertional speech,”
Speech Communication, vol. 29, no. 2-4, pp. 137–158, 1999.

[26] T. Shinozaki and S. Furui, “Error analysis using decision trees
in spontaneous presentation speech recognition,” in IEEE Work-
shop on Automatic Speech Recognition and Understanding, 2001.
ASRU’01. IEEE, 2001, pp. 198–201.

[27] N. H. De Jong and T. Wempe, “Praat script to detect syllable nu-
clei and measure speech rate automatically,” Behavior research
methods, vol. 41, no. 2, pp. 385–390, 2009.

[28] P. N. Garner, “Snr features for automatic speech recognition,” in
2009 IEEE Workshop on Automatic Speech Recognition & Under-
standing. IEEE, 2009, pp. 182–187.

[29] C. Kim and R. M. Stern, “Robust signal-to-noise ratio estima-
tion based on waveform amplitude distribution analysis,” in Ninth
Annual Conference of the International Speech Communication
Association, 2008.

[30] S. R. Quackenbush, “Objective measures of speech quality,” Ph.D.
dissertation, Georgia Institute of Technology, 1995.
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